If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2+20t=0
a = 9; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·9·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*9}=\frac{-40}{18} =-2+2/9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*9}=\frac{0}{18} =0 $
| x(x-4)=-84 | | 3(x-5)+2x+2x+24+2x=360 | | 33=47-2(-3-5w) | | -6y-18=-24 | | 3(x-5)+2x2x+24+2x=360 | | 6a=-56 | | -8x-1x+8=14x+6 | | 4x=−6x=100 | | 6x+-1=3x+8 | | 50+21.50x=124.50 | | -3x+9=x+-7 | | 8-5x+6x=37 | | 285=30-v | | Y=6——1x | | 57=-3m(m+5)+m | | f+4/1 =−2/7 | | 7(9x−5)+6=−2−4(x−3) | | X2+(x+1)2+(x+2)2=77 | | 4-10y=24 | | -4x(9=33 | | 5/16=8w | | x8+8=32 | | 6y-7=y=8 | | -3=2y-9 | | 3n/3=-7 | | -1=p+9-(-2) | | 1/2s+28=1642 | | -3=-5-8t | | -7a=-6 | | 1/2s+38=144 | | -2-w=5 | | 4x2+8x-252=0 |